سفارش تبلیغ
صبا ویژن
طول ناحیه در قالب بزرگتر از حد مجاز


اکولوژی (Ecology) که یکی از شاخه‌های زیست شناسی است، مجموعه شناختهایی است که انسان درباره اثرات محیط بر روی موجود زنده و اثرات موجود زنده بر روی محیط و اثرات متقابل موجودات زنده باهم ، دارند. کلمه اکولوژی از لغت Oikos به معنی مسکن و پسوند Logos به معنای شناخت ، اشتقاق یافته است.

دید کلی

هر یک از شاخه‌های علوم برای خود موضوع خاصی دارند و اساس دلیل تمایز شاخه‌های مختلف تفاوت در موضوعات مورد بحث آنهاست. بر این اساس مجموعه دانسته‌های انسان درباره موجود زنده و اختصاصات آنها در چهارچوب دانش زیست شناسی جمع بندی می‌گردند. اما به دلیل وسعت موضوع شاخه‌های فرعی زیست شناسی انتظام یافته و هر یک از شاخه‌ها ، موجودات زنده را در اشلهای مختلف بررسی و تحقیق می‌نماید. اکولوژی را با عبارات زیر می‌توان تعریف کرد: مطالعه روابط متقابل بین موجودات زنده و محیط ، مطالعه ساختمان و کیفیت وقوع پدیده‌های زیستی در طبیعت ، مطالعه ساختمان و نحوه عملکرد طبیعت و مطالعه ساختمان و فیزیولوژی طبیعت.

مباحثی که در اکولوژی مطرح می‌شود به صورت زیر است. تولید و تجزیه اکوسیستمها ، جریان ماده و انرژی در اکوسیستمها ، چرخه‌های بیوژئوشیمیایی ، هرمهای اکولوژیک و زنجیره‌های غذایی، انواع زیستگاهها ، آلودگیهای زیست محیطی .... اکولوژی از بین دانشهای بشر تنها رشته‌ای که به عواقب علم و تکنولوژی می‌اندیشد و نگران افزایش علم و دخالت انسان در محیط است. جمعی اکولوژی را "علم ضد علم" نامیده‌اند چون سعی دارد نقش ترمز را روی ماشین علم و قدرت انسان بازی کند.

تقسیمات اکولوژی

اکولوژی را بر مبنای شرایط مطالعه به دو بخش می‌توان تقسیم کرد.

اتواکولوژی (Autoecology)

از دید مکتب فرانسوی اگر یک موجود زنده به تنهایی در ارتباط با محیط مطالعه شود و هیچگونه رابطه‌ای با موجودات زنده دیگر در محیط نداشته باشد این نوع مطالعه اتواکولوژی است. مثلا گیاهان در مناطق نزدیک قطب یا در بیابانها در فواصل بسیار دور از همدیگر رشد و زندگی می‌کنند و عملا هیچگونه ارتباط زیستی اعم از حمایت یا رقابت با همدیگر ندارند، مطالعه در چنین محیطهایی داخل بحث اتواکولوژی قرار دارد. در مکتب آمریکایی اگر موجود زنده‌ای به حالت منفرد و یا عده‌ای از افراد متعلق به یک گونه واحد در رابطه با محیط بررسی شوند این مطالعه اتواکولوژی است.

سین اکولوژی (Synecology)

وقتی موجود زنده در کنار موجودات زنده دیگر اعم از اینکه به گونه واحد یا گونه‌های متعددی متعلق باشند، زندگی کند، مطالعه اکولوژی چنین موجودی در محدوده بحثهای سین اکولوژی می‌باشد. یا به عبارت دیگر اگر موجود یا موجودات زنده در جمع سایر موجودات زنده مورد بررسی قرار گیرد. مطالعه از نوع سین اکولوژی است. مثلا مطالعه یک درخت بلوط یا درختان بلوط در یک جنگل و در جمع سایر گیاهان و جانوران.



عکس پیدا نشد

 

تفاوت اکولوژی و فیزیولوژی گیاهی

تفاوت اساسی اکولوژی و فیزیولوژی گیاهی این است که دانش فیزیولوژی اثرات فرد فرد عوامل محیط را در شرایط آزمایشگاهی بر روی پدیده‌های حیاتی بررسی می‌کند. به این معنی که کلیه عوامل محیط را مصنوعا و در یک حد ثابت در آزمایشگاه ایجاد می‌نماید و آنگاه اثرات نوسان یک عامل را بر روی پدیده‌های زیستی مطالعه می‌کند. ولی دانش اکولوژی اثرات عوامل محیط را در شرایط طبیعی در روی موجودات زنده بررسی می‌نماید.

فرق اساسی شرایط آزمایشگاهی و طبیعت در این نکته است که وقتی یکی از عوامل محیط در طبیعت تغییر می‌کند، عده ای از عوامل و شرایط دیگر محیط به تبعیت از همان عامل نوسان می‌کنند. به همین لحاظ دشواری بسیار مهم مطالعات اکولوژی پیچیدگی شرایط مطالعه است. به علاوه اکولوژی به اثرات موجودات زنده در روی محیط نیز عمیقا توجه دارد.

مباحث مورد بحث در اکولوژی عمومی

اکوسیستم

کلیه موجودات زنده یک ناحیه مفروض را که با محیط فیزیکی خود در کنش متقابل هستند. بطوریکه جریان انرژی در آن موجب پیدایش ساختمان مشخص تغذیه‌ای ، تنوع زیستی و گردش مواد گردد و چرخه دقیقا یا تقریبا بسته برای انتقال مواد بین محیط و موجودات زنده برقرار گردد که تثبیت و انتقال انرژی خورشید را ممکن سازد، اکوسیستم نامیده می‌شود. مباحثی که در داخل اکوسیستم بحث می‌شود شامل این موارد است. اجزای اکوسیستم ، فاکتورهای محیطی و شیمیایی در اکوسیستم ، تولید و تجزیه در اکوسیستم ، جریان ماده و انرژی در داخل اکوسیستم ، تولیدات غذایی در اکوسیستم ، زنجیره‌های غذایی و شبکه غذایی و هرمهای اکولوژیکی.

اصول کلی در مورد مطالعه محیط

یکی از این اصول میدان اکولوژی یا نیش اکولوژی می‌باشد. منظور از میدان اکولوژی یک موجود زنده مجموعه‌ای از شرایط محیط است که موجود زنده در طبیعت تحت آنها زندگی می‌کند. در این محدوده باید دامنه نوسان محیط و اثرات آنرا در روی پدیده‌های حیاتی بررسی و مشخص کنیم. از اصول دیگر می‌توان به عوامل محدود کننده اشاره کرد. در این مورد دو قانون مینیمم و تحمل بحث می‌شود.

قانون مینیمم می‌گوید که عنصر غذایی که کمترین مقدار را در محیط زندگی جاندار حائز است میزان رشد و نمو آن را تعیین می‌کند. قانون مینیمم در طبیعت حکومت می‌کند. قانون تحمل می‌گوید که وفور و یا شدت عوامل اکولوژیکی می‌توانند مرزها و امکانات رشد و زندگی جانداران را محدود و معین سازند. در این مقوله تطابق موجودات زنده با عوامل محدود کننده ، شرایط مناسب یا Optimal در ارتباط با عوامل محدود کننده بحث می‌شود.

جمعیت

مفهوم و معنای کلمه جمعیت برای اذهان همه مردم آشناست. وقتی می‌گوییم جمعیت ایران ، منظور همه ایرانیانی است که در یک زمان معین در کشور ایران زندگی کرده یا می‌کنند. از نظر اکولوژی نیز تعریف جمعیت اساسا بر این مبنا است. جمعیت مجموعه افراد متعلق به یک گونه است که در یک فضای معین و در یک زمان مشخص زندگی می‌کنند. زندگی موجودات در حالت انفرادی و اجتماعی عمیقا باهم تفاوت است. بررسی جوامع زنده بخش مهمی از دانش اکولوژی را تحت عنوان سین اکولوژی تشکیل می‌دهد.

آلودگیهای محیط زیست

ورود هر نوع ماده خارجی به آب ، هوا و خاک به میزانی که کیفیت فیزیکی ، شیمیایی یا بیولوژیکی اجزای محیط را تغییر داده و به حال موجودات زنده مضر باشد، آلودگی نام دارد. مباحثی مرتبط که در اکولوژی مطرح می‌شود شامل مواد آلاینده طبیعی ، مواد آلاینده مصنوعی ، تقسیم بندی آلودگیها ، اثرات مواد آلاینده و آلودگی توسط مواد رادیواکتیو می‌باشد.



عکس پیدا نشد

 

زیستگاهها

زیستگاهها به مکانهایی اطلاق می‌شود که موجود زنده گیاهی و جانوری در آنجا زندگی می‌کنند. فاکتورهای زیادی تعیین کننده نوع زیستگاه موجودات زنده است. زیستگاهها 4 نوع هستند: زیستگاههای خشکی ، زیستگاههای آبی ، زیستگاههای هوایی و زیستگاههای زیرزمینی. که مطالعه این محیطها و موجودات در آنها در محدوده علم اکولوژی قرار دارد.

ارتباط اکولوژی با سایر علوم

اکولوژی با رشته‌های فیزیولوژی گیاهی ، گیاه شناسی ، جانور شناسی ، ژنتیک و میکروبیولوژی در ارتباط است.

مباحث مرتبط با عنوان


  

کتون
89/11/10:: 10:54 ع
(0)

کتون‌ها ترکیباتی هستند که در آنها ، گروه کربنیل به دو گروه آلکیل و یا آریل متصل است.


تصویر
عامل کتون (c=o)

 

گروه کربونیل

در کتون ها و آلدئیدها ، گروه کربونیل از یک پیوند δ و یک پیوند π تشکیل شده است که به‌علت عدم پخش یکنواخت بار در طول پیوند ، قطبی می‌باشد. انرژی پیوند کربونیل در آلدئیدها ، 176 کیلوکالری بر مول و در کتون‌ها 180 کیلوکالری بر مول می‌باشد. برای نامگذاری کتونها از پسوند اون (one) استفاده می‌شود.

شماره گذاری اتمهای کربن از طرفی انجام می‌گیرد که گروه کربونیل ، شماره کمتری داشته باشد و پس از ذکر شماره عامل کربونیل ، اسم هیدروکربن را ذکر کرده ، پسوند اون بر آن افزوده می‌شود. اگر ترکیب ، گروه اسیدی هم داشته باشد، اولویت شماره گذاری با گروه اسیدی خواهد بود. در این صورت ، عامل کربونیل به نام OXO مشخص می‌شود.

کتون‌های موجود در طبیعت

کتون‌های موجود در طبیعت ، بوی مطبوع دارند، آلدئیدها و کتون‌ها مواد شیمیایی بسیار ارزشمندی هستند و در صنعت به‌عنوان حلال یا مواد اولیه مصرف می‌شوند و بعضی‌ها مانند تستسترون به‌عنوان هورمون دارای اثرات دارویی و بیولوژیکی می‌باشند.

برخی مانند بی‌اسیل در آماده‌سازی و خوش طعم کردن کره مصنوعی ، مارگارین (Margarine) ، مورد استفاده قرار می‌گیرد. 3- متیل سیکلوپنتا دکانون (مشک آهوی ختن) که از غدد نوعی آهو بدست می‌آید، بسیار معطر می‌باشد. یکی دیگر از مواد زیر روه کربونیل ، کافور می‌باشد که یک کتون است.

تهیه کتونها از اکسید کردن الکلها

با استفاده از برخی اکسید کننده‌های ملایم مثل دی‌اکسید منگنز ، واکنشگر Jones و... ، الکلهای نوع دوم بصورت حدود اکسید می‌شوند و به کتون هم کربن خود تبدیل می‌گردند.

تهیه آلدئیدها و کتونها با استفاده از ترکیبات آلی فلزی

گاهی اوقات از ترکیبات آلی فلزی برای سنتز آلدئیدها و کتونها استفاده می‌شود. در سالهای اخیر برای سنتز ترکیبات کربونیل‌دار از R2Cd یا RZnX یا R2Zn استفاده زیادی شده است. قدرت هسته خواهی ملایم و محدود این واکنشگرها ، این امکان را فراهم می‌کند که از کلرواسیدها ، کتونهای مربوطه سنتز شوند. واکنش ترکیبات آلی فلزی با اسیدهای کربوکسیلیک هم به کتون منجر می‌شود.

سنتز آلدئیدها و کتونها از طریق اکسیداسیون آلکیل بنزن‌ها

یکی از روشهای مهم و تجارتی تهیه فنل ، اکسیداسیون ایزوپروپیل بنزن با اکسیژن و هدرولیز هیدروپروکسید حاصل می‌باشد. در این واکنش ، استون هم تولید می‌شود.

سنتز آلدئیدها و کتونها با آب دادن آلکینها

آلکینها را می‌توان به کمک واکنشگرهای مناسب به آلدئید یا کتون تبدیل نمود. مثلا از افزایش آب بر آلکینها در حضور کاتالیزور سولفات جیوه و محلول آبکی اسید سولفوریک ، کتون بدست می‌آید.

تهیه کتونها از طریق واکنش نوآرایی α- دیول‌ها (نوآرایی پنتاکولیک)

وقتی α- دیول‌ها در محیط اسیدی یا قلیایی قرار بگیرند، با مکانیسم خاصی ، آب از دست می‌دهند و یکی از گروهها از کربنی به کربن دیگر مهاجرت می‌کند و کتون تولید می‌شود. یک چنین بازآرایی به بازآرایی Wagner-Meerwein موسوم است.


تصویر
استن

 

اکسید شد همراه با شکسته شدن ، اکسید و احیای خودبخودی کتونها

از اکسید شدن الکلها بوسیله اسید کننده‌های مناسب مانند اسید کرومیک ، آلدئید یا کتون بدست می‌آید. اگر واکنش اکسید شدن بوسیله اکسید کننده‌های مناسب ادامه یابد، در این صورت اسید کربوکسیلیک تولید می‌شود. اکسید شدن کتونها بوسیله پراسیدها نیز موجب شکسته شدن پیوند گروه کربونیل یا کربن مجاور می‌‌شود که یکی از روشهای بسیار مهم تهیه استرها و لاکتونها از کتونها می‌باشد و به واکنش ««Baeyer-Viniger»» موسوم است. با استفاده از گروههای مختلف معلوم شده است که گروه مهاجر بصورت آنیونی و با حفظ آرایش ، مهاجرت می‌نماید.

واکنش هالوفرم

یکی از واکنشهایی که هم کتون را اکسید می کند و هم موجب شکسته شدن پیوند گروه کربونیل با کربن مجاور می شود، واکنش هالوفرم می‌باشد که معمولا در مورد کتونهای متیل‌دار انجام می‌گیرد. این واکنش با ید نیز به سهولت انجام پذیر می‌باشد و یدوفرم زرد رنگ آزاد می‌گردد. این واکنشها در محیط قلیایی انجام می‌شوند.


  

استر
89/11/10:: 10:54 ع
(0)

ترکیبهای اسیدهای کربوکسیلی به فرمول R--COOR ، استر نامیده می‌شود که در آن گروه -R یک گروه آلکیل یا آریل می‌باشد و یک گروه عمده از ترکیبات آلی را تشکیل می‌دهند. استرهای حلقه‌ای نیز که لاکتون نامیده می‌شوند، جزو گروه استرها می‌باشند.




تصویر
یک نوع واکنش برای تولید استر

 

خواص استر

استرها غالبا فرار و معطرند و برخی از آنها در میوه‌های رسیده یافت می‌شوند. مثلا استات ایزوپنتیل ، بوی موز است، والرات ایزوپنتیل بوی سیب بوده و پروپیونات ایزوبوتیل ، بوی نیشکر است.

موارد استفاده از استر

خیلی از استرها مانند استات اتیل و استات بوتیل ، بعنوان واکنش‌گر و یا حلال و نرم کننده رزینها در آزمایشگاهها و صنعت مورد استفاده قرار می‌گیرند.

استرهای طبیعی

مومها

چربیها و روغن‌ها و موم‌هایی که در طبیعت یافت می‌شوند، حاوی استرهایی با جرم مولکولی بالا می‌باشند که به لیپید موسومند. موم‌ها مخلوط پیچیده‌ای از استرها ، الکلها و آلکانهای با زنجیر طویل می‌باشند، ولی جزء اصلی تشکیل دهنده آنها ، استرهایی می‌باشند که از واکنش اسیدهای چرب و الکلهای با زنجیر طویل بوجود می‌آیند.

از جداسازی و مطالعه مواد تشکیل دهنده موم زنبور عسل معلوم شده است که میریسیل پالمیتات ، بیشترین مقدار آن را تشکیل می‌دهد که یک استر است.

چربیهای جامد و روغنهای مایع

چربیهای جامد و روغنهای مایع ، استرهایی هستند که از واکنش اسید چرب سنگین و گلسیرین بوجود می‌آیند و گلیسیرید نامیده می‌شوند. تعداد کربن اسیدها بین هشت تا بیست و دو می‌باشد. مطالعات نشان داده است که اسیدهای موجود در استرها ممکن است از یک نوع نباشند و بطور اتفاقی روی گلیسیرین قرار گرفته باشند. بعنوان مثال ، یک مولکول گلسیرین ممکن است به سه گروه استئارات یا یک مولکول پالمتیات و دو مولکول استئارات و … متصل شده باشد.

مهم‌ترین اسیدهای چرب اشباع شده‌ای که از هیدرولیز چربیها و روغنها بدست آمده‌اند، عبارتند از: اسید لوریک (Lauric acid) ، اسید پالمتیک (Palmitic acid) ، اسید استئاریک (Stearic acid). روغنهای مایع به مقدار زیاد ، گلیسیریدهای اسیدهای چرب اشباع نشده هستند. مهمترین اسیدهای اشباع نشده ، C_18 می‌باشند.

روغنهای مایع به علت داشتن پیوندهای ? آسیب پذیرند و لذا با هیدروژن‌دار کردن کاتالیزوری ، پیوندهای دوگانه را از بین می‌برند تا نگهداری آنها آسانتر گردد. خیلی از روغنهای جامدی که در آشپزی مورد استفاده قرار می‌گیرند، از هیدروژن‌دار کردن روغن دانه‌ها و غلات تهیه می‌شوند. هیدروژن‌دار کردن چربیها ، با اینکه امکان نگهداری این مواد را فراهم می‌سازد، ولی هضم آنها را در متابولیسم با اشکالی مواجه می‌سازد.

در سالهای اخیر ، معلوم شده است که این چربیها موجب مسدود شدن رگهای خونی و امراض قلبی می‌گردند.

روش تهیه استرها و لاکتونها

اولین و قدیمی‌ترین روش سنتز استرها ، واکنش اسیدهای آلی با الکلها در حضور اسید معدنی(معمولا اسید سولفوریک) می‌باشد. با این روش ، می‌توان خیلی از استرها را بطور مستقیم سنتز نمود که این روش ، روش فیشر (Fisher) نامیده می‌شود. در مواقعی که اسید یا الکل بکار رفته ، ارزان قیمت باشد، می‌توان مقدار یکی از واکنشگرها را چند برابر دومی انتخاب کرد و تعادل را به نفع تشکیل محصول بیشتر جابجا کرد و استر بیشتری بدست آورد.

گاهی اوقات برای حصول نتیجه بهتر ، می‌توان یکی از محصولات را از محیط خارج کرد و در نتیجه ، واکنش را به سمت تشکیل محصول بیشتر سوق داد.

صابونی شدن

استرها در محلولهای قلیایی آبکی تحت حمله قرار می‌گیرند و نمک اسید آلی را تولید می‌نمایند. این واکنش به صابونی شدن موسوم می‌باشد. برای تائید صحت مکانیسم واکنش از استرهای حاوی اکسیژن با جرم اتمی 18 که یک اتم ایزوتوپ است، استفاده می‌شود و مشاهده می‌گردد که اتم اکسیژن سنگین همراه الکل آزاد می‌شود و نشان می‌دهد که حمله هسته خواهی به گروه کربونیل استر انجام شده است.

تهیه الکل از استر

استرها با ترکیبات آلی فلزی واکنش می‌دهند. از این روش برای تهیه الکلهای مربوطه استفاده می‌شود. از واکنش استرهای فرمیات با ترکیبات آلی فلزی الکل نوع دوم تولید می‌شود.


  

الکل
89/11/10:: 10:54 ع
(0)

الکلها ترکیباتی هستند که دارای گروه هیدروکسیل می‌باشند. فرمول کلی آنها ROH است که در آن R یک گروه آلکیل یا آلکیل استخلاف شده است.

img/daneshnameh_up/8/85/axsh030.gif

 

دید کلی

اگر ، بعنوان یک شیمیدان آلی ، قرار بود ده ترکیب آلیفاتیک انتخاب کنید و سپس در جزیره‌ای رها شوید، شما قطعا الکلها را برمی‌گزیدید. شما می‌توانید از آنها تقریبا هر ترکیب آلی دیگر را بسازید، آلکیل هالیدها ، آلکنها ، اترها ، آلدئیدها ، کتونها ، اسیدها ، استرها و دهها ترکیب دیگر.

از آلکیل هالیدها ، می‌توانید واکنشگرهای گرینیار را بسازید و از واکنش این واکنشگرها با آلدئیدها و کتونها الکلهای پیچیده‌تری را بدست آورید و غیره. در آن جزیره دور افتاده ، از الکلهای خود ، نه فقط بعنوان ماده خام استفاده می‌کنید، بلکه آنها را به دفعات ، بعنوان حلال برای انجام واکنشها و برای متبلور کردن فراورده‌ها بکار می‌برید.

اهمیت الکلها

ما نمی‌توانیم در هیچ یک از بخشهای شیمی آلی خیلی جلو برویم، بدون اینکه به الکلها بربخوریم. الکلها در استخلاف هسته دوستی بعنوان سوبسترا و بعنوان هسته‌دوست شرکت می‌کنند. مهمترین و ساده‌ترین اثر کاتالیزوری متعلق به الکلهاست که در شیمی انواع ترکیبها ، در لوله آزمایش و در ارگانیسم زنده ، نقش کلیدی برعهده دارد.

الکلها به آلکیل هالیدها و سایر ترکیباتی که استخلاف هسته‌دوستی انجام می‌دهند، تبدیل می‌شوند، استخلافی که معرفی انواع گروههای عاملی در یک مولکول را امکان پذیر می‌سازد. الکلها امکان دسترسی ما به ترکیبهایی با حالتهای اکسایش بالاتر ، یعنی آلدئیدها ، کتونها و اسیدهای کربوکسیلیک را فراهم می‌سازند.

ساختار الکلها

فرمول عمومی الکلها ، ROH است که در آن ، R یک گروه آلکیل یا آلکیل استخلاف شده است. این گروه می‌تواند نوع اول ، دوم یا سوم باشد، ممکن است زنجیرباز یا حلقه‌ای باشد، ممکن است دارای یک اتم هالوژن ، هیدروکسیل‌های بیشتر یا یکی از بسیاری گروههای دیگری باشد که فعلا برای ما ناآشنا است.

همه الکلها ، دارای گروه هیدروکسیل (-OH) هستند که بعنوان گروه عاملی ، خواص مشخصه این خانواده از ترکیبها را تعیین می‌کند. تغییر و تنوع در ساختار R می‌تواند بر سرعت واکنشهای الکلها و حتی در موارد معدودی بر نوع واکنشها نیز تاثیر گذارد.


img/daneshnameh_up/c/c4/2ph.gif
فنل

 

نکته‌ای در مورد تفاوت الکلها و فنلها

ترکیباتی که در آنها گروه هیدروکسیل مستقیما به یک حلقه آروماتیک متصل است، الکل نیستند، بلکه این ترکیبات ، فنل هستند و با الکلها آنچنان تفاوت فاحشی دارند که آنها را در مبحثی دیگر باید مورد بررسی قرار داد.

طبقه‌بندی الکلها

الکلها بسته به نوع کربن حامل گروه OH- ، به سه دسته نوع اول ، نوع دوم یا نوع سوم طبقه‌بندی می‌شوند:

C(R)_3-OH ، C(R)_2H-OH ، CR(H)_2-OH .

یک واکنش اکسایش که مستقیما با دخالت اتمهای هیدروژن متصل به کربن حامل گروه OH- انجام می‌شود، در طبقه از الکلها ، روندی کاملا متفاوت دارد.

اما ، معمولا ، الکلهای طبقات مختلف ، فقط از نظر سرعت یا مکانیسم واکنش و به هر طریقی هماهنگ با ساختارشان ، با هم تفاوت دارند. بعضی از استخلافها می‌توانند آنچنان بر واکنش پذیری یک الکل تاثیر گذارند که آن را با الکلهای طبقه‌های دیگر مشابه سازند.

منابع صنعتی الکلها

الکلها ، موادی این چنین مهم در شیمی آلیفاتیک ، نه تنها باید از نظر واکنشها بسیار گوناگون و تنوع پذیر باشند، بلکه به مقدار زیاد و با قیمت ارزان نیز باید قابل تهیه باشند. برای بدست آوردن الکلهای سبک که تکیه‌گاه سنتز آلی آلیفاتیک هستند، سه روش اصلی وجود دارد، روشهایی که می‌توانند همه منابع مواد آلی را مورد استفاده قرار دهند. یعنی نفت ، گاز طبیعی ، زغال سنگ و زیست توده. این سه روش عبارتند از:


علاوه بر این سه روش اصلی ، روشهای دیگری نیز با کاربرد محدود وجود دارند. بعنوان مثال ، متانول از هیدروژن‌دار کردن کاتالیزوری مونوکسید کربن بدست می‌آید. مخلوط هیدروژن و مونوکسید کربن با نسبت ضروری ، از واکنش آب با متان ، آلکانهای دیگر ، یا زغال سنگ در دمای بالا بدست می‌آید.

img/daneshnameh_up/9/97/products_actis_formula_ma.gif

 

خواص فیزیکی الکلها

دمای جوش

در میان هیدروکربنها ، به نظر می‌رسد که عوامل تعیین کننده دمای جوش ، عمدتا وزن مولکولی و شکل مولکول باشند. در الکلها ، با افزایش تعداد کربن ، دمای جوش بالا می‌رود و با شاخه‌دار کردن زنجیر ، دمای جوش پایین می‌آید، اما نکته غیر عادی در مورد الکلها این است که آنها در دمای بالا به جوش می‌آیند. این دمای جوش بسیار بالاتر از دمای جوش هیدروکربنها با وزن مولکولی یکسان است و حتی از دمای جوش بسیاری ترکیبها با قطعیت قابل ملاحظه بالاتر است.

دمای جوش بالای آنها ، به علت نیاز به انرژی بیشتر برای شکستن پیوندهای هیدروژنی است که مولکولها را در کنار هم نگه داشته‌اند.

حل شدن الکلها

رفتار الکلها بعنوان حل شده نیز توانایی آنها برای تشکیل پیوندهای هیدروژنی را منعکس می‌کند. برخلاف هیدروکربنها ، الکلهای سبک با آب امتزاج‌پذیرند. از آنجا که نیروهای بین مولکولی الکلها همانند نیروهای بین مولکولی آب است، دو نوع مولکول با یکدیگر قابل اختلاط هستند. انرژی لازم برای شکستن یک پیوند هیدروژنی بین دو مولکول آب یا دو مولکول الکل ، با تشکیل یک پیوند هیدروژنی بین یک مولکول آب و یک مولکول الکل تامین می‌شود.


  


در حالت کلی سینتیک شیمیایی را می‌توان علم مطالعه سیستمهای ناظر بر تجزیه شیمیایی و یا تغییر حالت مولکولها دانست. به عبارت دیگر سینتیک را می‌توان علم مکمل ترمودینامیک دانسته و سیستمهایی را که توزیع انرژی آنها با زمان تغییر می‌نماید مطالعه کرد. نظریه‌هایی که اثرات متقابل شیمیایی را توجیه می‌کنند بطور گسترده‌ای بر اساس نتایج تجربی پایه گذاری شده‌اند که با روشهای ترمودینامیکی و سینتیکی به دست می‌آیند.

نگاه اجمالی

با یک نگرش سطحی می‌توان مشاهده نمود که برخی از واکنشهای شیمیایی آنی بوده و تعدادی کند یا بی‌نهایت کند هستند. همچنین شدت بعضی از واکنشها در آغاز زیاد است، رفته رفته آهسته می‌گردند، برعکس برخی از واکنشها به کندی شروع شده و سپس شتاب می‌گیرند، سینتیک عامل زمان را در واکنشهای شیمیایی مطرح و مورد بحث قرار می‌دهد.

تاریخچه

از نظر تاریخی مطالعه سرعت واکنشها یکی از قدیمی‌ترین موضوعات شیمی فیزیک بوده است. و نزل در سال 1777 سرعت انحلال فلزات در اسیدها را مطالعه کرد. ویلهمی در سال 1850 هیدرولیز بوسیله اسیدها را مورد بررسی قرار داد و به این نتیجه رسید که سرعت واکنش هیدرولیز ساکاروز متناسب با غلظت ساکاروز تجزیه نشده است.

ویلهمی را می‌توان پایه گذار سینتیک نامید. درسال 1862 برتلو و سن ژیل نیز نتایج مشابهی روی هیدرولیز استرها در محیط اسیدی داشتند، سرانجام درسال 1863 گولدبرگ و واگ نتایج فوق را تعمیم داده و به صورت قانون اثر غلظت‌ها بیان کردند.

مطالعات اولیه سینتیک

اولین مطالعات در سینتیک شیمیایی مربوط به اندازه گیری سرعت واکنشها بوده و برای رسیدن به هدف اصلی با توجیه این سرعتها به شناخت مکانیسم کامل واکنش مورد مطالعه پی می‌بریم. البته از آنجا که سرعت اندازه گیری شده یک حالت آماری متوسط مولکولهای شرکت کننده در واکنش می‌باشد، سینتیک شیمیایی اطلاعی از حالت انرژیتیکی یا وضع فضایی مولکولها را بطور جداگانه ارائه نمی‌دهد ولی با این وصف مطالعه جنبشی واکنشهای شیمیایی در تفکیک مکانیسمهای پیچیده به مراحل ساده ، دارای توانایی و قدرت قابل توجهی می‌باشد.

مکانیسم کلی واکنشهای پیچیده‌ای که واکنشگرها تغییرات مرحله‌ای انجام می‌دهند، تنها با مطالعه سینتیکی سرعت یعنی فرایند حاکم بر واکنش از طریق مطالعه سینتیکی قابل تشریح می‌باشد.

استفاده همزمان از عوامل ترمودینامیکی و سینتیکی

ترمودینامیک شیمیایی هم مانند سینتیک شیمیایی شاخه مهمی از شیمی فیزیک است. در ترمودینامیک عامل زمان ، در کار نیست و در آن از تعادل و حالت ابتدایی و انتهایی سیستم بحث می‌شود. بی آنکه از سرعت رسیدن به تعادل سخن گفته شود. در بیشتر موارد عملی اکثر اطلاعات مورد نیاز با استفاده همزمان از عوامل ترمودینامیکی و سینتیکی بدست می‌آید. برای مثال در فرایندهای برای تهیه آمونیاک داریم:





زمانی که واکنش گرمازا باشد طبق اصل لوشاتلیه تهیه آمونیاک در فشار بالا و دمای پایین امکانپذیر است. ولی عملا در دمای سرعت واکنش به اندازه‌ای کند است که به عنوان یک فرایند صنعتی مقرون به صرفه نمی‌باشد. لذا اگر چه در فرایند‌ هابر با استفاده از فشارهای زیاد تعادل در جهت تولید آمونیاک پیشرفت می‌کند، عملا در حضور کاتالیزور و دمای (عوامل ترمودینامیکی) سرعت رسیدن به تعادل به مراتب افزایش می‌یابد. در نتیجه برای مشخص نمودن شرایط انجام این واکنش از عوامل ترمودینامیکی و سینتیکی استفاده می‌شود.

تفاوتهای سینتیک و ترمودینامیک

علم ترمودینامیک بیشتر مبتنی بر تغییر انرژی و آنتروپی است که معمولا همراه با تغییر در سیستم می‌باشد و با استفاده از انرژی آزاد یک واکنش و همچنین ثابت تعادل آن امکان انجام یا عدم انجام یک واکنش شیمیایی را پیش‌بینی می‌کند. اما نتایج ترمودینامیکی به هیچ وجه نمی‌تواند سرعت تغییرات شیمیایی و یا مکانیسم تبدیل واکنش دهنده‌ها اطلاعاتی به ما بدهد. به عنوان مثال اکسیژن و نیتروژن موجود در جو زمین می‌توانند با آب اقیانوسها وارد واکنش شده و اسید نیتریک رقیق تولید کنند.

بر اساس اطلاعات ترمودینامیکی ، این واکنش به صورت خودبه‌خودی می‌تواند انجام شود. اما طبق اطلاعات سینتیکی خوشبختانه سرعت آن خیلی کم می‌باشد. تفاوت مهم دیگر بین سینتیک و ترمودینامیک این است که طبق اصول اساسی ترمودینامیک مقدار ثابت تعادل برای واکنشها مستقل از مسیری است که واکنش دهنده‌ها را به فراورده تبدیل می‌کند اما در سینتیک مسیر واکنش بسیار اهمیت دارد، زیرا کلیه مراحل و مکانیسم واکنشهای شیمیایی را تشکیل می‌دهد.


  

مشخصات مدیر وبلاگ
SHAYANSHEETREH[0]
 

با سلام . به وبگاه رسمی علم و دانش خوش آمدید ! من شایان شیت ره هستم دانش آموز دبیرستان سلام صادقیه ! این پروژه تحقیقی بنده است . تا این جا 77 مطلب ثبت گردیده . امید وارم از این مطالب نهایت استفاده رو ببرید . با تشکر مدیریت !


لوگوی وبلاگ

بایگانی
عناوین یادداشتهای وبلاگ
آمار وبلاگ
بازدید امروز : 10
بازدید دیروز : 2
کل بازدید : 45487
کل یاداشته ها : 77
دوستان

ترجمه از وردپرس به پارسی بلاگ توسط تیم پارسی بلاگ